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Received 10 July 2007; received in revised form 22 December 2007; accepted 7 January 2008

Handling Editor: C. Morfey

Available online 7 March 2008
Abstract

This paper presents the experimental results of the dynamic behaviour of a circular arch in undamaged and several

damaged configurations, and compares them with those obtained by means of analytical methods. The damage is

introduced in the undamaged arch by operating a notch and is then modelled as a torsion spring of suitable stiffness

localised in the damaged cross-section. Good agreement between analytical and experimental results is observed.

An identification procedure based on frequency measurements is proposed and validated.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years there has been a growing interest towards non-destructive techniques of structural
monitoring, for instance by means of dynamic quantities [1–5]. This paper follows the same field of research
and is intended to show the measured modal quantities in a plane circular arch. Dynamic tests are performed
first for the undamaged arch, and then in the same arch damaged by means of a localised notch. The
experimental results are here compared with the same quantities as obtained by an analytical model.

The specimen considered for the experiments consists of a circular arch made of steel with a thin (compared
with the arch span) rectangular section, hinged at both ends (Fig. 1). Measurements are performed at least for
the first five natural frequencies and the radial components of the first four natural vibration modes of the
specimen. The experimental tests are performed on the undamaged arch, then are repeated on the same arch
after having caused a damage on it. The damage consists in a very thin notch, which could then be thought as
localised in a narrow neighbourhood of the considered cross-section; the depth of the notch is progressively
increased until half of the height of the section is reached.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Fig. 1. Circular arch specimen: particulars of the notch and of the hinged end.
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The experiments show that the variation of the natural frequencies between the undamaged and the
damaged configurations are small, but in any case appreciable. On the other hand, the natural vibration
modes reveal themselves as almost insensitive to these localised damage levels.

In order to have analytical results to compare with the measured experimental ones, a direct one-
dimensional (1D) model is used. In a previous paper [6], some of the authors examined different models, by
successively neglecting the shearing strain between the cross-sections and the axis, the rotary inertia, the
extension of the axis and the tangential inertia. In this paper, though, since we deal with experimental
measurements, a 1D arch model with no inner constraints is adopted.

The damage is considered as a singularity in the bending stiffness of the arch, and thus is modelled as a
torsion spring with a suitable stiffness, localised in the section where the damage is caused.

The obtained experimental results are in good agreement with the analytical estimates. In the case of the
natural frequencies, the differences between the values given by the analytical model and the measured ones
increase with the mode order; in any case, the errors are less than 4%. As far as the vibration modes are
concerned, a very good correspondence is observed. A diagnostic technique based on the frequency sensitivity
to damage is also applied and allows a rather precise identification in all the configurations studied in the
experiments.

2. Direct problem

2.1. Analytical model

In order to model homogeneous circular arches, both in the undamaged and in the damaged configuration,
analytical models already present in the literature are taken into account, some examples of which are given in
Refs. [6–14].

Let us consider a circular arch in undamaged configuration hinged at both ends (Fig. 2a); moreover, let us
suppose that the arch undergoes free linear vibration in its own plane. Due to the supposed linearity, the
oscillations are ‘‘small’’ and limited to a neighbourhood of the reference configuration, which is the one
depicted in Fig. 2a.

Kinematics of the arch are described by means of the displacement components of the axis in the tangential
and radial direction, denoted by u and v, respectively, and by means of the cross-section rotation, denoted by
j. All the kinematical fields are supposed to be regular enough functions of the angular abscissa yA[�Y,Y]
along the arch axis and of the time t. The chosen kinematics is the richest as possible for a 1D continuum, in
order to match, at least in principle, with experimental outcomes.
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Fig. 2. Geometry of the arch: (a) in the undamaged and (b) damaged configuration.
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The scalar equations of the free motion are [8–11]
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supplemented by the boundary conditions

uð�Y; tÞ ¼ uðY; tÞ ¼ 0;

vð�Y; tÞ ¼ vðY; tÞ ¼ 0; t40:

qjð�Y; tÞ
qy

¼
qjðY; tÞ

qy
¼ 0;

(2)

In Eq. (1), R is the radius of the circumference which the arch axis is part of, r is the mass density per unit
volume of the material of the arch. A and I are the area and the relevant moment of inertia of the cross-
section, respectively. E and G are the longitudinal and tangential moduli of elasticity, respectively, and w is the
shear shape factor of the cross-section.

As it is customary in free vibration, a harmonic solution with respect to time, of natural angular frequency
o, is looked for. In this way, a system of ordinary differential equations with respect to the variable y is
obtained, which may be solved by applying the technique of Euler’s characteristic exponents, in order to
obtain exact solutions of the problem of the free vibration of the arch (see Refs. [13,14]).

Suppose now that the arch is damaged by a notch located at the angular coordinate yD. This situation is
modelled by dividing the arch into two continuous parts linked by means of a torsion spring of stiffness K

located at yD, as shown in Fig. 2b. As suggested in a previous paper [6], the value of K can be approximated
supposing that the actual damage is distributed in a narrow zone of amplitude DyD and that the bending
stiffness is constant in that zone. In analogy with the case of a rectilinear beam [7], it is possible to provide an
estimate of the stiffness K according to the following expression:

K ¼
EID

ðEI � EIDÞ

EI

DyDR
, (3)

where EID is the flexural stiffness in the neighbourhood of the notch and DyDR ¼ H/a, with H the height of
the cross-section and a approximately equal to 2 (see also Ref. [15]). Then, the damaged arch consists of two
regular undamaged parts, each governed by the system of Eqs. (1). In addition to the boundary conditions (2),
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the following jump conditions hold at the damaged cross-section (see also Refs. [13–16]):

uð2ÞðyD; tÞ � uð1ÞðyD; tÞ ¼ 0;

vð2ÞðyD; tÞ � vð1ÞðyD; tÞ ¼ 0;

Kðjð2ÞðyD; tÞ � jð1ÞðyD; tÞÞ ¼M ð1ÞðyD; tÞ; t40;

N ð2ÞðyD; tÞ �N ð1ÞðyD; tÞ ¼ 0;

V ð2ÞðyD; tÞ � V ð1ÞðyD; tÞ ¼ 0;

M ð2ÞðyD; tÞ �M ð1ÞðyD; tÞ ¼ 0;

(4)

where the apexes (1) and (2) imply that the considered field refers to the left and the right undamaged parts of
the arch, respectively. The inner actions N and V (i.e., the tangential and radial component of the force) and M

(i.e., the unique bending component of the moment) are expressed in terms of the kinematical fields via the
standard linear elastic constitutive relations

Nðy; tÞ ¼
EA

R

quðy; tÞ
qy
� vðy; tÞ

� �
,

V ðy; tÞ ¼
GA

Rw
uðy; tÞ þ

qvðy; tÞ
qy
þ Rjðy; tÞ

� �
,

Mðy; tÞ ¼
EI

R

qjðy; tÞ
qy

. (5)

It is possible and not difficult to extend the solving procedure adopted in the undamaged case and hence
provide exact solutions.

2.2. Experimental tests

The dynamical quantities measured on the specimen are the natural frequencies and the radial component
of the displacement, i.e., of the natural vibration modes. The tests are performed four times: the first
one is carried out on the undamaged arch, the others by introducing a notch of increasing depth: 2.5mm
(D1), 5.0mm (D2) and 7.5mm (D3). The notch is localised in a section placed at 16.51 with respect to the axis
of symmetry of the arch (see particulars of Fig. 1). The specimen used in the tests is obtained by bending an
initially straight element according to an arc of a circumference (Fig. 3).

The nominal geometric and material characteristic properties of the specimen are shown in Table 1. The
arch is hinged to the ground by means of two hinges, which are made by rollers fixed on suitable supports
(see particulars of Fig. 1).

The experimental activity is carried out at the laboratory of the Istituto di Scienza e Tecnica delle
Costruzioni of the Università Politecnica delle Marche in Ancona, Italy. The tests are performed by using the
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Fig. 3. Geometry of the experimental specimen.
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Table 1

Nominal geometric and material characteristic properties of the steel arch specimen

Characteristic properties Values

Young’s modulus (of longitudinal elasticity), E 206,000MPa

Shear modulus (of tangential elasticity), G 80,000MPa

Mass density, r 7850 kg/m3

Radius of the axis of the arch, R 1000mm

Angular span of the arch, 2Y 1201

Base of the cross-section, B 45mm

Height of the cross-section, H 15mm

Area of the cross-section, A 675mm2

Relevant moment of inertia of the cross-section, I 12,656mm4

Fig. 4. Sketch of the experimental apparatus and of the measurement points.

M.N. Cerri et al. / Journal of Sound and Vibration 314 (2008) 83–94 87
impulsive technique, the main features of which are a high speed of execution and a good reproducibility of
the measured quantities [17].

The arch is excited by means of a Brüel and Kjær hammer, type 8202, endowed with a tip rigid enough
in the frequency range considered during the experiments. The acquisition of the dynamic response is
obtained by means of a piezoelectric Brüel and Kjær accelerometer, type 4508. The input signal is processed by
force windows with time amplitude equal to 1/10 of the recording time; the output signal is filtered
by an exponential window with time decay constant c ¼ 1/4. The signals are acquired and transferred
in the frequency domain by means of a Brüel and Kjær signal analyser, working under a PULSE LabShop
system.

The frequency response functions in terms of inertance are extracted from the data obtained by the
acquisition system. After coarsely detecting the values of the natural frequencies, inertance is assessed in the
neighbourhood of span 25Hz, centred on each value of resonant frequency with a resolution of 1/16Hz. Each
frequency response function is evaluated as the average over 10 tests, because of the good reproducibility of
the measurements. Since the values of the natural frequencies are far enough from each other, and the value of
the damping is small, it is possible to make use of the single mode extracting technique. For each frequency
response function, the values of the natural frequency, of the damping and of the modal residuals are extracted
by means of a curve-fitting procedure based on a least-squares interpolation algorithm.

The arch is divided into 20 elements, each with an angular span of 61; in this way, 21 measurement
points are singled out (Fig. 4). For higher-order modes and in the undamaged case only, these measurement
stations are doubled. The radial components of the first four natural vibration modes are determined
by fixing the position of the accelerometer and by varying the point where the arch is excited, i.e., in
correspondence with the considered measurement points. The magnitude of each frequency response function
at the resonance value is proportional to the transversal component of displacement of the pertaining natural
vibration mode.
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2.3. Experimental results and comparisons

The first five natural frequencies for the undamaged and for the three damaged configurations of
the arch are shown in Table 2. As expected, a progressive decrease in the value of the natural frequencies
with respect to the increase in the depth of the notch is observed. The corresponding variations bet-
ween the undamaged and damaged states are small, but clearly detectable starting from the first level of
damage and not mistaken with measurements errors. As an example, the third vibrating mode is the
most sensitive to the presence of the notch, with frequency variations equal to 0.25% and 1.37%, respectively,
for D1 and D3 damage configuration. Conversely, the fourth mode is practically insensitive to the
damage.

Fig. 5 shows the plots of the experimental results concerning the radial component of the displacement in
the first four vibration modes for the undamaged and the D3-damaged arch. The behaviour of the radial
component of the displacement shows a satisfactory regularity, both in the undamaged and in the damaged
Table 2

Experimental natural frequencies and their variation (in percentage) for different damage amounts

Mode Undamaged Damage D1 Damage D2 Damage D3

Frequency (Hz) Frequency (Hz) Variation (%) Frequency (Hz) Variation (%) Frequency (Hz) Variation (%)

1 24.52 24.48 0.18 24.40 0.48 24.32 0.80

2 61.78 61.72 0.10 61.66 0.20 61.60 0.30

3 118.05 117.76 0.25 117.11 0.80 116.43 1.37

4 184.11 184.03 0.04 183.91 0.11 183.81 0.16

5 269.02 268.24 0.29 268.43 0.22 267.94 0.40

Frequency variation: Df ¼ 100(fund�fdam)/fund.

-60 -30 0 30 60
0 [°]

-60 -30 0 30 60
0 [°]

-60 -30 0 30 60
0 [°]

-60 -30 0 30 60
0 [°]

Fig. 5. Radial component of the first four mode shapes for the undamaged and the D3-damaged arch: (a) first mode, (b) second mode,

(c) third mode, and (d) fourth mode. Undamaged configuration: solid thick line and damaged configuration: dashed thin line.
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Table 3

Experimental and analytical natural frequencies for the considered arch specimen

Mode Undamaged Damage D1 Damage D2 Damage D3

E (Hz) A (Hz) D (%) E (Hz) A (Hz) D (%) E (Hz) A (Hz) D (%) E (Hz) A (Hz) D (%)

1 24.52 24.62 0.4 24.48 24.61 0.6 24.40 24.54 0.6 24.32 24.29 �0.1

2 61.78 62.14 0.6 61.72 62.14 0.7 61.66 62.11 0.7 61.60 62.01 0.7

3 118.05 119.92 1.6 117.76 119.81 1.7 117.11 119.24 1.8 116.43 117.15 0.6

4 184.11 189.52 2.9 184.03 189.48 3.0 183.91 189.22 2.9 183.81 188.32 2.5

5 269.02 279.09 3.7 268.24 279.02 4.0 268.43 278.64 3.8 267.94 277.23 3.5

E: experimental; A: analytical; D ¼ 100(fanal�fexp)/fexp: error.
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Fig. 6. Relative variation of natural frequencies vs. increasing damage severity: (a) first mode, (b) second mode, (c) third mode, and

(d) fourth mode. Experimental variation: solid line and analytical variation: dashed line. D ¼ 100(fund�fdam)/fund.
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configurations. The mode shapes are more or less the same in the two cases, hence these dynamic quantities do
not provide, as it is known in Ref. [18], an adequate damage indicator, at least for the considered small
damage levels represented by the depth of the notch.

In Table 3 there is a comparison between the experimental frequencies and their corresponding analytical
estimates for both the undamaged and damaged arch. The analytical model overestimates the experimental
frequencies and differences become higher as the mode order rises. For all examined cases the model turns out
to be extremely accurate, with percentage errors below 4.0%.

Remark that the geometry is the measured one on the specimen and slightly differs from the nominal values
reported in Table 1. The variation between the measured and the nominal dimensions of the cross-section does
not exceed 0.15mm.

Fig. 6 shows the relative variation of the natural frequencies between the damaged and the undamaged
configurations as functions of the damage intensity. It is interesting to observe that the analytical model serves
as a good representative of the experimental results, since the patterns of the two curves are similar for all the
values of the damage severity.

In conclusion, Fig. 7 shows, for the undamaged arch, both the experimental and analytical values of the
radial component of the displacement of the axis for the first four natural modes. It is apparent that there is a
very good agreement between the two sets of values.
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Fig. 7. First four experimental (dots) and analytical (solid line) modal shapes of the undamaged arch: (a) first mode, (b) second mode,

(c) third mode, and (d) fourth mode.
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3. Inverse problem

3.1. Frequency sensitivity to small damages

In this section, we try to determine the location and the amount of the damage intensity by means of an
identification technique based on the measurements of the variation of the natural frequencies of the arch
specimen between the undamaged and damaged configurations. In order to perform this procedure, we need
to find an expression for the sensitivity of the natural frequencies induced by damage.

It would be possible to perform an analytical study of the arch in damaged configuration, in order to obtain
the quantities of interest from the point of view of diagnostics for any amount of damage. Let us suppose,
though, that the damage severity is ‘‘small’’, i.e., of order of magnitude 1/K. It is reasonable to admit that the
natural frequencies and the vibration modes in the undamaged and damaged configurations will not differ
remarkably. It is then possible to extend the sensitivity analysis presented by Morassi [19] in the case of axial
and bending vibration of rectilinear beams. Such analysis is based on a power expansion of the field equations
in a neighbourhood of the undamaged configuration in terms of an arbitrary small parameter truncated at the
first order. In this way, one can find that the ith axial frequency variation, for a given level of damage, is
proportional to the square of the axial force in the ith undamaged mode shape evaluated at the damaged
cross-section. Similarly, in the case of bending vibration the ith frequency variation is proportional to the
square of the bending moment in the ith undamaged mode shape evaluated at the damaged cross-section.

If we suppose, as usual, the kinematical fields to be harmonic with respect to time, i.e.

uðy; tÞ ¼ uðyÞ cosðotÞ; vðy; tÞ ¼ vðyÞ cosðotÞ; jðy; tÞ ¼ jðyÞ cosðotÞ, (6)

the field Eqs. (1) yield
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The boundary and jump conditions for Eqs. (7) are formally identical to Eqs. (2) and (4), once it is
understood that the dependence on time is dropped because of the positions (6). Let us pose

uðyÞ ¼ u0ðyÞ þ �u1ðyÞ; vðyÞ ¼ v0ðyÞ þ �v1ðyÞ; jðyÞ ¼ j0ðyÞ þ �j1ðyÞ,

l ¼ l0 þ �l1; l ¼ o2, (8)

where the subscript 0 refers to fields defined in the undamaged configuration, the subscript 1 stands for the
first-order increment of the indicated field with respect to the undamaged configuration, and e is a small
perturbation parameter.

Let us substitute the positions (8) into Eqs. (7) and drop the terms of order higher than the first in e. It is
then possible to single out a group of addends defined in the undamaged configuration and hence identically
satisfied. The remaining equations read as follows:
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The positions (8) must be inserted in the boundary and jump conditions (2) and (4) as well. The zeroth order
terms turn out to be trivial and have a typographical expression similar to the finite ones (2) and (4); they will
not be reported for sake of brevity. The same considerations also hold for the boundary and jump conditions
pertaining to the first-order set of Eqs. (9), with the exception of the jump condition on the rotation of the
damaged cross-section, which reads

�Kðjð2Þ1 ðy
D
Þ � jð1Þ1 ðy

D
ÞÞ ¼

EI

R

dj0ðy
D
Þ

dy
. (10)

Let us multiply Eq. (9-1) by u0, Eq. (9-2) by v0, and Eq. (9-3) by j0, integrate the obtained expressions in the
domain [�Y,Y] and sum. Integrating by parts and suitably keeping into account the boundary and jump
conditions both at the zeroth and the first order, we obtain an expression, which, introducing the
normalisation condition Z Y

�Y
rRðAðu2

0 þ v20Þ þ Ij2
0Þdy ¼ 1, (11)
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As expected, expression (12) shows that the variation of frequency induced by a localised crack is
determined as a ratio between the squared bending moment of the undamaged arch evaluated at the damaged
cross-section yD and the severity K.

3.2. An application

Since we know from experimental data the variations of the natural frequencies, we are able to use Eq. (12)
in order to detect the damage. Let us denote by Dlj the variation associated with the jth natural mode; it is
then possible to re-write Eq. (12) putting into evidence the damage severity as a function of the damage
location:

Kjðy
D
Þ ¼ �

ðM0jðy
D
ÞÞ
2

Dlj

. (13)
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It is then possible to plot the curve Kj(y
D) for each j; the intersection of two such curves for distinct modes

will let us calculate both yD and Kj. Due to the geometrical symmetry of the problem, there are always two
damage location candidates, symmetrically placed with respect to the mid-span of the arch. As it is pointed out
also in a previous paper [6], two distinct modes are not sufficient to uniquely determine the damage location in
one-half of the arch. On the other hand, by considering more than two curves, it is possible to reject non-
meaningful damage location candidates. Since it is impossible to get rid of model and experimental errors, and
because of the linearisation procedure adopted, the intersection of more than two curves is not a single point
but rather a small neighbourhood of the actual solution.

It is then necessary to define a distance function

rðyD
Þ ¼

X
jai

Kjðy
D
Þ � Kiðy

D
Þ

�� ��. (14)

In order to find the solution y
D
of the inverse problem, we take the minimum of the distance function (14);

then, we assume the damage severity Kðy
D
Þ as a mean value

Kðy
D
Þ ¼

1

n

Xn

j¼1

Kjðy
D
Þ, (15)

n being the number of modes used in the identification procedure.
With the aim of testing the validity of the proposed technique, an identification application based on the

experimental data obtained for the above-described arch specimen is performed. It is worth remarking that,
since the proposed technique is based on the measurements of frequency variations, possible errors in the arch
model do not meaningfully affect the obtained results, as it was previously remarked in Ref. [6]: indeed, in that
paper a simple Euler–Bernoulli curvilinear beam is adopted and the error between the analytical and the
pseudo-experimental data is remarkable, yet the identification procedure provides good results.

In Fig. 8 the plots of the distance function (14) are reported for all the amounts of damage considered and
for different choices of the number of modes used in the identification technique. It is evident that in all the
considered cases the loci of the minima are clearly well defined and the results are summarised in Table 4. The
damage location in all cases is satisfactorily provided, with a relative error less than 2%. The number of modes
used in the technique does not meaningfully influence the accuracy of the results. Indeed, on the one hand the
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Fig. 8. Plots of the r(yD) functions for different damage intensities and number of modes used in the identification procedure: (a) damage

D1, (b) damage D2, and (c) damage D3. n ¼ 3, solid thick line; n ¼ 4, solid thin line; and n ¼ 5, dashed line.
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Table 4

Identification of the damage location for different damage intensities and number of modes used

Damage D1 Damage D2 Damage D3

yD (deg) yD (deg) yD (deg) yD (deg) yD (deg) yD (deg)

n ¼ 3 �13.81 13.81 �14.60 14.60 �14.84 14.84

n ¼ 4 �14.42 14.42 �14.63 14.63 �14.64 14.64

n ¼ 5 �14.54 14.54 �15.75 15.75 �14.88 14.88

Actual location 16.50 16.50 16.50

Table 5

Identification of the damage severity for different damage intensities and number of modes used

Damage D1 Damage D2 Damage D3

K (kNm) K (kNm) K (kNm)

n ¼ 3 372.66 136.40 82.49

n ¼ 4 337.00 132.29 82.89

n ¼ 5 328.74 175.77 105.00

Cerri and Ruta [6] 1410.62 217.31 49.62

Ostachowicz and Krawczuk [20] 488.10 115.70 43.71
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increasing number of modes lets us better identify the neighbourhood of the damage location; on the other
hand, the analytical model is less accurate for higher-order modes, as it is already remarked in the previous
section.

In Table 5 the results for the average damage intensity are shown and compared with others, one of which is
obtained in function of the depth of the notch [20] and the other is based on the expression (3). The values are
remarkably different, as expected: indeed, the damage is in any case modelled in a rather coarse way. On the
other hand, it is apparent that the assessment of the damage intensity increases for all n with the depth of the
notch, thus providing a reliable tool.

4. Conclusions

In this paper, the results of dynamical experimental tests performed on a circular steel arch are presented.
The arch is tested in the undamaged configuration and in three different damaged configurations. The damage
is obtained by operating a very narrow notch, which so could be thought of as affecting a single cross-section
of the arch. Three damaged configurations are studied by considering increasing depths of the notch. The
damage is modelled by supposing the two regular parts of the arch as being connected by a rotation spring of
given stiffness, which so constitutes a measure of the damage severity. The arch is described as a 1D
curvilinear beam according to the Timoshenko theory, and rotational inertia is also taken into account. The
diagnostic, inverse problem is solved by means of an identification technique based on the measurements of
the variations of natural frequencies between the undamaged and the damaged configurations. The sensitivity
to damage is investigated by means of a formal series expansion in a neighbourhood of the undamaged
configuration. The following conclusions can be drawn from the comparison between experimental and
analytical data: (a) the experimental natural frequencies and vibration modes are well represented by the
analytical model, at least for the first five modes; (b) the variation of the first five natural frequencies are
clearly detectable and may be easily compared with the analytical data; (c) on the contrary, the radial
components of the first four vibration modes turn out to be practically unaffected by the damage, hence
cannot be assumed as a meaningful diagnostic tool, at least for the small damage amounts taken into
consideration; (d) the identification yields very reliable results as far as the damage location is concerned, while
it is only roughly accurate in evaluating the damage severity, always bearing in mind that the considered
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damage is small. Further possible developments could involve the introduction of a more refined model of the
damage and of the measure of the damage severity.
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